Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach
نویسندگان
چکیده
Autonomous navigation of miniaturized robots (e.g., nano/pico aerial vehicles) is currently a grand challenge for robotics research, due to the need for processing a large amount of sensor data (e.g., camera frames) with limited on-board computational resources. In this paper we focus on the design of a visual-inertial odometry (VIO) system in which the robot estimates its ego-motion (and a landmark-based map) from onboard camera and IMU data. We argue that scaling down VIO to miniaturized platforms (without sacrificing performance) requires a paradigm shift in the design of perception algorithms, and we advocate a co-design approach in which algorithmic and hardware design choices are tightly coupled. Our contribution is four-fold. First, we discuss the VIO co-design problem, in which one tries to attain a desired resource-performance trade-off, by making suitable design choices (in terms of hardware, algorithms, implementation, and parameters). Second, we characterize the design space, by discussing how a relevant set of design choices affects the resource-performance trade-off in VIO. Third, we provide a systematic experiment-driven way to explore the design space, towards a design that meets the desired trade-off. Fourth, we demonstrate the result of the co-design process by providing a VIO implementation on specialized hardware and showing that such implementation has the same accuracy and speed of a desktop implementation, while requiring a fraction of the power.
منابع مشابه
Keyframe-based visual-inertial odometry using nonlinear optimization
Combining visual and inertial measurements has become popular in mobile robotics, since the two sensing modalities offer complementary characteristics that make them the ideal choice for accurate Visual-Inertial Odometry or Simultaneous Localization and Mapping (SLAM). While historically the problem has been addressed with filtering, advancements in visual estimation suggest that non-linear opt...
متن کاملFPGA Can be Implemented Using Advanced Encryption Standard Algorithm
This paper mainly focused on implementation of AES encryption and decryption standard AES-128. All the transformations of both Encryption and Decryption are simulated using an iterativedesign approach in order to minimize the hardware consumption. This method can make it avery low-complex architecture, especially in saving the hardware resource in implementing theAES InverseSub Bytes module and...
متن کاملPIRVS: An Advanced Visual-Inertial SLAM System with Flexible Sensor Fusion and Hardware Co-Design
In this paper, we present the PerceptIn Robotics Vision System (PIRVS) system, a visual-inertial computing hardware with embedded simultaneous localization and mapping (SLAM) algorithm. The PIRVS hardware is equipped with a multi-core processor, a global-shutter stereo camera, and an IMU with precise hardware synchronization. The PIRVS software features a novel and flexible sensor fusion approa...
متن کاملVision-Aided Absolute Trajectory Estimation Using an Unsupervised Deep Network with Online Error Correction
We present an unsupervised deep neural network approach to the fusion of RGB-D imagery with inertial measurements for absolute trajectory estimation. Our network, dubbed the Visual-Inertial-Odometry Learner (VIOLearner), learns to perform visual-inertial odometry (VIO) without inertial measurement unit (IMU) intrinsic parameters (corresponding to gyroscope and accelerometer bias or white noise)...
متن کاملStereo Visual Odometry for Autonomus Mobile
Estimating its ego-motion is one of the most important capabilities for an autonomous mobile platform. Without reliable ego-motion estimation no long-term navigation is possible. Besides odometry, inertial sensors, DGPS, laser range finders and so on, vision based algorithms can contribute a lot of information. In this paper, we want to give an integrated overview of stereo odometry. We want to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017